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1 Overview
The decompilation process consists of a few different steps:

• Disassembly

• Code flow analysis

• Code generation

Of these steps, the code flow analysis is engine-independent, while dis-
assembly and code generation require engine-specific code.

1.1 Reading guide

Names used in code are written in a monospaced typewriter font.
Actual code snippets have basic syntax highlighting on a light gray back-

ground, and lines are numbered, like below:
1 #include <stdio.h>
2
3 int main(int argc, char ∗∗argv) {
4 printf("Hello world!");
5 return 0;
6 }

In this document, the terms control flow analysis and code flow analysis
are used interchangably.

1.2 Limitations

The decompiler is targeted for stack-based instruction sets, and may contain
assumptions to that effect. If you want to add an engine which does not use
a stack-based instruction set, parts of this document may not apply directly,
and additional work to the generic parts may be necessary.
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2 Engine
The Engine class represent a single engine. It works as a factory for the
engine-specific classes required for each step of the process.

As a minimum, engines must provide a disassembler and a code genera-
tor. All other steps are optional, but you can implement them for additional
processing.

If you need to store metadata about the script, you can add the necessary
fields to your engine class and store the information there, as the same
instance will be used throughout the decompilation process.

2.1 Adding a new engine

In order to make the decompiler use the code you write to decompile code
for some engine, it must be registered in the program. To do so, include the
header file for your engine in decompiler.cpp, and use the ENGINE macro
defined there to register your engine with the program.

This macro takes 3 parameters: the engine ID, a description of the en-
gine, and the name of the Engine subclass used to create the classes used
for the various steps of the process. The ID is entered by the user to signify
the engine where the script originates from, and the description is a descrip-
tive text which will be shown when the user requests a list of the supported
engines. In general, you should place the files for your engine in a folder
with the same name as the engine ID you use.

The methods you need to implement in your Engine subclass are:

• getDisassembler, which takes a reference to the instruction vector to
use for storage and creates a disassembler object and returns it. For
more on disassemblers, see Section 3 on page 6.

• getCodeGenerator, which takes a reference to the std::ostream to
output the code to and creates a code generator object and returns it.
For more on code generators, see Section 5 on page 19.

Additional methods you can override are:

• supportsCodeFlow and supportsCodeGen, which can be used to stop
the decompiler from going any further after disassembly or code flow
analysis, respectively. This is helpful when working on a brand new
engine, so you can take one step at a time without having to remember
to use the right command-line switch. If you do not override these
methods, the decompiler will go through all steps.

• detectMoreFuncs allows you to tell the control flow analysis to auto-
matically detect functions based on reachability. See Section 4.1 on
page 15 for details. By default, this is turned off; engines must opt-in
to this feature.
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• postCFG, which is a post-processing step called after control flow anal-
ysis. If you override detectMoreFuncs to return true, you must also
override this function to process any newly found functions. A default
implementation which does nothing is already provided in case you do
not need to do any post-processing.

• usePureGrouping is used to toggle “pure” grouping. In pure grouping,
stack levels are ignored during group generation in the control flow
analysis. By default, this is turned off. See Section 4.2 on page 16 for
details.

Additionally, if your engine is not stack-based, you may not wish to see
the stack effect when reviewing the disassembly or code flow graph. You
can disable this by calling setOutputStackEffect(false) from e.g. your
Engine constructor. The method is defined in instruction.h, which you will
have to include.

It is important to realize that you do not necessarily need to implement
a completely new code generator and disassembler for every engine; for
variations on the same engine, you can reuse the existing classes and simply
send in any extra information required. In particular, code generators are
likely to be reusable without change for different versions of the same engine
– e.g., the Kyra2 code generator will likely work for all Kyra games.

For this purpose, the user may optionally specify an engine variant,
which is a string that will be passed to your Engine. If you make use of this
feature, you should also override getVariants to specify which variants your
engine supports. This list will be displayed to the user if they specify an
engine while using the -h option.

Note that the variant sent into your engine is not validated against your
list of supported variants. This keeps the variant logic flexible, and allows
you to implement your own fallback logic for unknown variant strings.

If you can auto-detect the variant from the script file, you should prefer
this approach over asking the user to specify the variant.

2.2 Functions

Some engines allow multiple functions in a single script file. Each function
must be analyzed separately, but in order to do that, it is of course necessary
to know where the functions start and end, and when it is time to actually
generate some code, you will want to know a bit about the function as well.

This information is stored in the engine, as a std::map of Functions,
in the field _functions.

1 struct Function {
2 public:
3 ConstInstIterator _startIt;
4 ConstInstIterator _endIt;
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5 std::string _name;
6 GraphVertex _v;
7 uint32 _args;
8 bool _retVal;
9 std::string _metadata;

10 };

Each member of this struct has a specific purpose:

• _startIt is a const iterator pointing to the first instruction in the
function, i.e. the entry point.

• _endIt is a const iterator pointing to the instruction immediately after
the last instruction, similar to end() on STL collections.

• _name is the name of the functions.

• _v is the GraphVertex containing the entry point. This will be auto-
matically assigned in the control flow analysis.

• _args is the number of arguments for the function. This is present as
a convenience; usually, you will not know the names of the arguments
in the function, so you can store the number of them here and use
this during code generation to generate a method signature containing
some default parameter names.

• _retVal should be true if your method returns a value, and false if it
does not. Again, this is for your own convenience, to make it easier to
handle calls.

• _metadata contains metadata about the function, so you know how
to handle the arguments when the function is being called. It is up to
you how you want to use this.

When you add a function to the map, you must use the address of the
first instruction as the key.

Sometimes, you do not know where all of the functions begin or end. In
that case, the control flow analysis can analyze the code for you and auto-
matically detect missing functions or unknown end points. See Section 4.1
on page 15 for details.

3 Disassembler
The purpose of the disassembler is to read instructions from a script file and
convert them to a common, machine-readable form for further analysis.
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3.1 Instructions

Instructions are represented using a type hierarchy, with the Instruction
struct as the base type.

1 struct Instruction : public RefCounted {
2 uint32 _opcode;
3 uint32 _address;
4 int16 _stackChange;
5 std::string _name;
6 std::vector<ValuePtr> _params;
7 std::string _codeGenData;
8
9 friend std::ostream &operator<<(std::ostream &output, const Instruction ∗inst);

10 virtual std::ostream &print(std::ostream &output) const;
11 virtual bool isJump() const;
12 virtual bool isCondJump() const;
13 virtual bool isUncondJump() const;
14 virtual bool isStackOp() const;
15 virtual bool isFuncCall() const;
16 virtual bool isReturn() const;
17 virtual bool isKernelCall() const;
18 virtual bool isLoad() const;
19 virtual bool isStore() const;
20 virtual uint32 getDestAddress() const;
21 virtual void processInst(ValueStack &stack, Engine ∗engine, CodeGenerator ∗codeGen)

= 0;
22 };

Each member of this struct has a specific purpose:

• _opcode is used to store the numeric opcode associated with the in-
struction. This is not used by the decompiler itself, but is for your
reference during later parts of the decompilation process. Note that
this field is declared as a 32-bit integer; if you need more than 4 bytes
for your opcodes, you will need to figure out which bytes you want to
store if you want to use this field.

• _address stores the absolute memory address where this instruction
would be loaded into memory.

• _stackChange stores the net change of executing this instruction - for
example, if the instruction pushes a byte on to the stack, this should
be set to 1. This is used to determine when each statement ends. The
count can be in any unit you wish - bytes, words, bits - as long as the
same unit is used for all instructions. This means that if your stack
only works with 16-bit elements, pushing an 8-bit value and pushing
a 16-bit value should have the same net effect on the stack.

• _name contains the name of the instruction. This is mainly for use
during code generation.
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• _params contains the parameters given to the instruction - for exam-
ple, if you have the instruction PUSH 1, there would be one parameter,
with the value of 1. See Section 3.3 on the next page for details on the
Value type.

• _codeGenData stores metadata to be used during code generation. For
details, see Section 5 on page 19.

If some instructions do not have a fixed effect on the stack–that is, the
instruction name alone does not determine the effect on the stack–set the
field to some easily recognizable value when doing the disassembly. You will,
however, have to determine the exact stack effect after disassembling the
script, as the code flow analysis depends on this information to be accurate.

3.2 Instruction types

As mentioned previously, the different instructions are represented using a
type hierarchy. This allows you to independently specify how each kind of
instruction should be handled, while abstracting away the engine-specific
information to allow for generic analysis.

This is particularly important during code flow analysis; since this part
is completely engine-independent, the analysis must have some way of dis-
tinguishing the different types of instructions. For that purpose, a number
of is* methods are defined which specify whether the instruction satisfies
some specific purpose.

Each of the predefined instruction types have a class associated with it
to make it simpler to add functionality to a specific class of instructions, as
specified in Table 3.1 on the next page.

For some of these, an extra type exists which contains a default imple-
mentation of processInst, assuming a sensible default implementation ex-
ists. The default implementations are found in BinaryOpStackInstruction,
BoolNegateStackInstruction, DupStackInstruction, KernelCallStackInstruction,
ReturnInstruction, UnarayOpPrefixStackInstruction, UnaryOpPostfixStackInstruction,
UncondJumpInstruction. Most of these are targeted at stack-based engines,
but if your engine doesn’t work with these, you can always create your own
class with your own implementation of processInst.

getDestAddress must be implemented on jump instructions to allow
the generic code to find the target of a jump. You must create subclassses
for your jump instructions which override this method.

Most of the types are self-explanatory, with the possible exception of
KernelCallInstruction. KernelCallInstruction should be used for "magic
functions"–opcodes that perform some function specific to the engine, like
playing a sound, drawing a graphic, or saving the game.

In a few cases, you may not know which instruction type is correct. For
example, in Kyra, the same opcode is used for unconditional jumps and
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Base class Purpose
BinaryOpInstruction Binary operations

(+, *, ==, etc.)
BoolNegateInstruction Boolean negation
CallInstruction Script function call
CondJumpInstruction Conditional jumps
DupInstruction Duplicate stack en-

try
UncondJumpInstruction Unconditional

jumps
KernelCallInstruction Kernel function

call
LoadInstruction Load from memory
ReturnInstruction Function return
StackInstruction Stack allocation or

deallocation
StoreInstruction Store to memory
UnaryOpPrefixInstruction Unary operation,

prefixed operator
UnaryOpPostfixInstruction Unary operation,

postfixed operator

Table 3.1: Predefined instruction types

script function calls, but the correct type depends on other instructions.
You can handle this is by creating a new Instruction type which can work
as both, depending on a flag you declare in your type, and set once you can
correctly determine the type. Note that since InstPtr is not a raw pointer,
you must first convert it to one before you can cast it to the pointer type of
your choice. This can be done by calling inst.get(), where inst is your
InstPtr.

When at all possible, you should inherit from one of the more specific
types, rather than inheriting directly from Instruction.

3.3 Parameters and values

Instruction parameters are stored using a hierarchy of Value types. Several
types are predefined in value.h, and you can declare new types if you need
to (e.g. a list of values).

Value types are also used during code generation, so you can reuse your
parameter values directly.

All Value types must define a print function which prints themselves
to a std::ostream. This is used not only for code generation, but also for
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disassembly and control flow output.
For direct values, you should also override the dup function to create a

copy of your class. The default implementation is tailored for values that
represent expressions, and will therefore output an assignment to show that
the result of an expression is being duplicated.

For more details, see Section 5.3 on page 19, where Values are discussed
wrt. code generation, and a list of predefined value types is given.

3.4 The Disassembler class

All disassemblers must inherit, directly or indirectly, from the Disassembler
class. This is an abstract class providing an interface for disassemblers.

1 class Disassembler {
2 protected:
3 Common::File _f;
4 InstVec &_insts;
5 uint32 _addressBase;
6
7 virtual void doDisassemble() throw(std::exception) = 0;
8 virtual void doDumpDisassembly(std::ostream &output);
9

10 public:
11 Disassembler(InstVec &insts);
12 virtual ~Disassembler() {}
13
14 void open(const char ∗filename);
15 void disassemble();
16 void dumpDisassembly(std::ostream &output);
17 };

_f represents the file you will be reading from. The file is opened using
the open function.

_insts is a reference to an std::vector storing the instructions, passed
in via the constructor. Whenever you have read an instruction fully, add it
here.

_addressBase is provided as a convenience if your engine does not con-
sider the first instruction to be located at address 0. Assign the expected
base address to this field, and make sure that the addresses you assign to the
instructions are relative to this base address. This is mainly useful if your
engine supports jumps or other references to absolute addresses in the script;
if only relative addresses are used, the base address will not be relevant.

doDisassemble is the method used to perform the actual disassembly,
so this method must be implemented by all disassemblers.

disassemble simply calls the doDisassemble method to perform the
disassembly. The result is cached, so if this method is called twice, it won’t
perform disassembly again.

Finally, dumpDisassembly is used to output the instructions in a human-
readable format to a file or stdout, performing a disassembly first if re-
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quired, and then calls doDumpDisassembly to perform the actual output.
doDumpDisassembly simply outputs each instruction in turn, using the print-
ing function associated with each instruction. If you want to customize the
way instructions are output, you should ideally create new Instruction sub-
classes and override their printing function, as the same format is used when
dumping a code flow graph, but if you just want to prepend or append some
additional information to the dump, you can override this method to do so.

3.5 The SimpleDisassembler class

To simplify the development of disassemblers, another base class is provided
for instruction sets where instructions are of the format opcode [params],
with opcode and parameters stored in distinct bytes.

SimpleDisassembler defines a number of macros which you can use for
writing your disassembler, and provides a framework for reading instruction
parameters.

Following is a guide on how to implement a disassembler using this class
as its base class. The instruction set used for this example is described in
Table 3.2. While not a very useful instruction set, it covers many different
aspects.

Instruction Parameters Description
PUSH (0x00) uint8 Pushes byte onto the stack.
POP (0x01) Pops a byte from the stack.
PUSH2 (0x02) int16 Pushes two bytes onto the stack.
POP2 (0x03) Pops two bytes from the stack.
PRINT (0x80) C string Prints string to standard output.

HALT (0xFF 0x00) Stops the machine.

Table 3.2: Instruction set used in the SimpleDisassembler example.

For the purpose of this example, our instruction set will use little-endian
values, and uses byte elements for the stack (so POP changes the stack pointer
by 1 and POP2 changes it by 2).

3.5.1 Opcode recognition

The first thing to do in the doDisassemble method is to read past any
header which may be present in your script file. We will assume that our
bytecode files do not have a header.

You must place your opcodes between two macros, START_OPCODES and
END_OPCODES. These two macros define the looping required to read one byte
at a time.

1 START_OPCODES;
2 END_OPCODES;
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To define an opcode, use the OPCODE macro. This macro takes 5 pa-
rameters: the opcode value, the name of the instruction, the name of the
Instruction type to use, the net effect on the stack, and a string describing
the parameters that are part of the instruction. We will start by implement-
ing the POP and POP2 opcodes:

1 START_OPCODES;
2 OPCODE(0x01, "POP", MyStackInstruction, −1, "");
3 OPCODE(0x03, "POP2", MyStackInstruction, −2, "");
4 END_OPCODES;

The OPCODE macro automatically stores the full opcode in the _opcode
field of the generated Instruction.

3.5.2 Parameter reading

PUSH, PUSH2 and PRINT all take parameters as part of the instruction. To
read these, you must specify them as part of the parameter string, using one
character per parameter. The types understood by default are specified in
Table 3.3.

Character Type
b Signed 8-bit integer.
B Unsigned 8-bit integer.
s Signed 16-bit byte, little-endian.
S Signed 16-bit byte, big-endian.
w Unsigned 16-bit byte, little-endian.
W Unsigned 16-bit byte, big-endian.
i Signed 32-bit byte, little-endian.
I Signed 32-bit byte, big-endian.
d Unsigned 32-bit byte, little-endian.
D Unsigned 32-bit byte, big-endian.

Table 3.3: Type specifications recognized by SimpleDisassembler.

To help you remember these meanings, little-endian values are encoded
using lower case ("small letters", i.e. little), while big-endian values are
encoded using upper case ("big" letters). The exception here is a single byte,
since endianness has no effect for individual bytes. Here, the mnemonic is
that an unsigned byte ("B") has a larger maximum value. For the other
letters, "s" was used because it is the first letter in "short", which is usually
a 16-bit signed value in C. Similarly, "i" is short for "int". "w" and "d" come
from the terms "word" and "dword", which are terms for 16-bit and 32-bit
unsigned types on the x86 platform.

Note that strings are not supported by default. To add reading of a
string type, you can override the readParameter function to add your own
types:
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1 switch (type) {
2 case ’c’: //Character string
3 {
4 byte cmd;
5 bool inStr = false;
6 std::stringstream s;
7 while ((cmd = _f.readByte()) != 0) {
8 s << cmd;
9 _address}};

10 }
11 s << ’"’;
12 p−>_type = kStringParamType;
13 p−>_value = s.str();
14 }
15 break;
16 default: //Defer handling to parent implementation
17 SimpleDisassembler::readParameter(p, type);
18 break;
19 }

Note that you will have to increment the _address variable manually
when you read a byte. This variable is used to determine the address of the
instruction, and must be kept in sync with your progress reading the file.

Now, we can add all three opcodes to the list:
1 START_OPCODES;
2 OPCODE(0x00, "PUSH", MyStackInstruction, 1, "B");
3 OPCODE(0x01, "POP", MyStackInstruction, −1, "");
4 OPCODE(0x02, "PUSH", MyStackInstruction, 1, "w");
5 OPCODE(0x03, "POP2", MyStackInstruction, −2, "");
6 OPCODE(0x80, "PRINT", KernelCallStackInstruction, 0, "c");
7 END_OPCODES;

3.5.3 Multi-byte opcodes

There is only one opcode left to add, HALT. This one is a bit trickier, because
it uses multiple bytes for the opcode - and the OPCODE macro only works for
one byte at a time.

To solve this, you can define subopcodes. By defining 0xFF as the start
of a multi-byte opcode, we can then specify 0x00 as representing a HALT
instruction when it follows 0xFF.

Defining 0xFF is easily done using the START_SUBOPCODE macro. After
that, specify the opcodes for this following byte, and finish the subopcode
declarations with END_SUBOPCODE.

1 START_OPCODES;
2 OPCODE(0x00, "PUSH", MyStackInstruction, 1, "B");
3 OPCODE(0x01, "POP", MyStackInstruction, −1, "");
4 OPCODE(0x02, "PUSH", MyStackInstruction, 1, "w");
5 OPCODE(0x03, "POP2", MyStackInstruction, −2, "");
6 OPCODE(0x80, "PRINT", KernelCallStackInstruction, 0, "c");
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7 START_SUBOPCODE(0xFF);
8 OPCODE(0x00, "HALT", KernelCallStackInstruction, 0, "");
9 END_SUBOPCODE;

10 END_OPCODES;

Subopcodes can be nested if the instruction set requires it. For subop-
codes, the _opcode field stores the bytes in the order they appear in the file
- i.e., the HALT instruction would have the opcode value 0xFF00. If the
opcodes are longer than 4 bytes, only the last 4 bytes will be stored.

If all opcodes in a group of subopcodes share a prefix, you can use the
START_SUBOPCODE_WITH_PREFIX macro instead of START_SUBOPCODE. This
macro takes an additional string parameter containing the full prefix to use
for the opcodes associated with this subopcode. The prefix is not propagated
if you nest subopcodes, only the nearest prefix is used.

3.5.4 Code generation metadata

For each opcode, you will need to replicate its semantics during code gener-
ation. To assist you in generalizing your code, you can use the OPCODE_MD
macro to add metadata to the instruction, which is then available during
code generation.

For example, if you have an opcode for addition, you can store the ad-
dition operator as a string in the metadata field, and have that put to use
during code generation to avoid having to check the opcode for each instruc-
tion of that type.

The arguments for the OPCODE_MD are the same as those for OPCODE, but
with an extra parameter at the end for the metadata.

1 START_OPCODES;
2 OPCODE_MD(0x14, "add", BinaryOpStackInstruction, −1, "", "+");
3 END_OPCODES;

For details, see Section 5 on page 19.

3.5.5 Advanced opcode handling

If you have one or two opcodes that do not quite fit into the framework
provided, you can define your own specialized handling for these opcodes.

Instead of using the OPCODE macro, put your code between OPCODE_BASE
and OPCODE_END. For example, if your opcode has the value 0x40, you would
use this:

1 OPCODE_BASE(0x40);
2 //Your code here
3 OPCODE_END;

OPCODE_BASE automatically keeps track of the current opcode value. You
can access full_opcode to get the current full opcode. Alternatively, you
can use the OPCODE_BODY macro to use the standard behavior for opcodes,
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and then follow that with the additional code you want. The OPCODE_BODY
macro takes the same arguments as the OPCODE_MD macro.

For your convenience, a few additional macros are available: ADD_INST,
which adds an empty instruction of the provided type to the vector, and
LAST_INST which retrieves the last instruction in the vector. Additionally,
you can use INC_ADDR as a shorthand for incrementing the address variable
by 1, but note that you should not increment the address for the opcode
itself - this is handled by the other macros.

4 Control flow analysis
The control flow analysis is a multi-step process:

• Create a graph with one instruction per vertex, and edges going from
instructions to their possible successors

• Do a depth-first search to determine the expected stack level at each
vertex

• Optionally detect functions

• Merge vertices to form groups

• Perform analysis on vertices

Calls to in-script functions are not represented with edges in the graph.
This is done to keep functions separate from one another, so if your engine
uses a jump as part of calling functions, you need to make sure you represent
the jump using a CallInstruction instead of a JumpInstruction.

The first step is handled in the constructor, while the next three steps
are handled by the createGroups() method. The last step is handled by
the analyze method.

4.1 Function detection

Prior to grouping, the control flow can be used to detect new functions. This
detection is automatically activated if the Engine method detectMoreFuncs
returns true.

When function detection is enabled, unreachable blocks of code will be
treated as functions, unless the presumed entry point is located within the
range of another function. The end point of the function will then be the
last instruction reachable from the entry point.

Functions detected this way will be given the name auto_. You can
use this as a prefix to the actual name to signify that the function may not
actually be a function, or you can ignore it and just replace it with the name
you would normally use.
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You can also have the function detection determine the end point of
an existing function. To do so, _endIt must be the same as _startIt for
that function. In this case, only the end point will be changed within the
function; the name will stay the same.

Note that the control flow analysis has no way of determining an ap-
propriate name, number of arguments, return value, or metadata. You will
have to fill that in yourself using postCFG in the engine.

If this step is not enabled, and no functions have been defined before the
control flow analysis is started, there will still be added a single function
covering the entire script. This is done to avoid having a special case in the
code, and it will not affect the output of your script in any way.

4.2 Group generation

Groups are initially formed according to these rules:

• If the next instruction is a jump or a return, end the group here.

• If the next instruction has multiple predecessors, end the group here.

• If the current instruction brings the stack to a lower level than the
start of the current group, make the new level the expected stack level
(to support clean-up after control structures).

• If the current instruction brings the stack level to the same as the start
of the current group, and at least one instruction with a non-negative
stack effect exists in the group, end the group here.

The final two rules are based on a property of stack-based engines: when
the stack becomes balanced, as defined by these two rules, this indicates that
the current group corresponds to a single line of code. This property of the
groups can be helpful when performing code generation, since it adds some
context – e.g., conditions are placed in a group of their own.

However, this only works for stack-based engines; for a non-stack-based
engine, each instruction ends up in a group of its own, which is particularly
bad for visualization of the code flow, since dot tends to choke on the large
amount of vertices resulting from this. For this reason, engines are able to
request pure grouping via the virtual usePureGrouping method, mentioned
in Section 2.1 on page 4. In pure grouping, only the first two rules are
applied, creating the minimum number of groups for any grouping algorithm.

Prior to applying these rules, a depth-first search is performed to calcu-
late the expected stack level at each instruction. If multiple paths are found
to the same instruction, a warning will be output if the expected stack level
from each path differs.

Unreachable code will not be processed during the group generation, but
will remain as individual instructions.
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4.3 Short-circuit detection

NOTE: This feature is currently disabled.
As part of the group generation, the decompiler can combine multiple,

consecutive groups if it detects them as being part of a single condition check
that are merely split up due to short-circuiting.

The rules used to detect if two consecutive groups A and B are oart of
the same short-circuited check are as follows:

• Both group A and B end with a conditional jump (they have two
possible successors each)

• For each outgoing edge from A, the edge must either go to B, or to
a successor of B – in other words, merging may not add any new
successors. More formally, succ(A) ⊆ {B} ∪ succ(B), where succ(X)
is the set of possible successors for the group X.

4.4 Construct detection

After the groups have been created, we then analyze the groups to find
the various kind of control flow constructs. The constructs are detected in
multiple steps, with one construct per step, in the following order:

• do-while

• while

• break

• continue

• if

• else

Each of these five constructs are marked using a GroupType member of
the Group type, while else blocks are flagged using two booleans, _startElse
and _endElse. If _startElse is true, then an else block starts with this
group, and should be output prior to the code in this group. If _endElse
is true, an else block ends with this group, and the end should be output
after the code in this group.

Once a group has been flagged as being some construct, it is skipped for
the other constructs.

The criteria used for each construct are as follows:

Do-while detection Group must end with a conditional jump (i.e., have
two outgoing edges). Jump must go to an earlier place in the code.
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While detection Group must end with conditional jump. Block must
have an ingoing edge from some group later in the code, unless that edge
comes from a do-while condition (in which case it is assumed to be an if
instead).

Break detection Unconditional jump to some place later in the code.
That place must either be the group immediately after a do-while condition,
or the jump target of a while condition. Additionally, the jump is verified
to go to the appropriate loop (so it does not exit multiple loops at once).

Continue detection Unconditional jump to a while or do-while con-
dition, unless it is targeting a while condition which jumps to the next
sequential group (in which case it is merely the end of the while-loop). Just
as with breaks, the jump is verified to go to the appropriate loop.

If detection All unflagged conditional jumps are flagged as ifs.

Else detection All ifs are processed to see if they may have an else
attached. If the jump target of an if is immediately preceded by an un-
conditional jump, which is neither a break or a continue, and that jump
goes to later in the code, this signifies a possible else block, starting with
the jump target of the if condition and ending with the group immediately
before the target of the jump immediately before the jump target of the if
condition. To avoid false positives, this block is then validated to not cross
block boundaries. If the check passes, the else block data is added to the
graph.

4.5 Graph output

The graph can be output in DOT format by using the -g switch. In the
graph, arrows on edges will be hollow if the edge is a jump, and filled if the
edge represents the usual sequential order.

4.6 Limitations

Currently, only unconditional jumps are supported for break and continue;
however, for code of the form if (...) break; or if (...) continue;,
it is a pretty straight-forward optimization to use the break/continue jump
as the conditional jump for the if condition check. Since ifs are found last,
it should be possible to simply check unmarked conditional jumps as well
and see if they meet the other criteria for a break/continue, although there
might be some false positives for an if that stretches to the end of the loop
it is placed in.
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It is currently assumed that all conditional jumps in if condition checks
go to a later place in the code. If optimized continue statements are used in
a while (as described above), this will cause the analysis to be incorrect.

5 Code generation
Having detected all of the various control flow constructs in the previous
phase, it is now time to put that information to use and generate some code
from the instructions.

Code generation is implemented as a two-step process:

• First, a DFS is performed to process all reachable groups. During this
processing, the code for that group is generated.

• Next, the groups are iterated over sequentially, and the generated code
is output.

This process is repeated for each function.

5.1 Function signature

For each function in the script, the constructFuncSignature method is
called. By default, this will return the empty string, and this will cause
the code to be output "freely", i.e. without anything surrounding it. If a
non-empty string is returned, a } will be added after all of the code in the
function.

If your engine uses methods, you will want to override this method to
output your own signature.

Note: You must currently include a { at the end of your signature.

5.2 Group processing

During processing of a group, the instructions in the group are processed one
at a time. This is done by calling processInst on each instruction. This
method should emulate the effect of the instruction, and, if the instruction
corresponds to a statement, call addOutputLine on the code generator to
add this statement as a line of code.

If you need to access information about the group currently being pro-
cessed, use the member variable _curGroup on the code generator.

5.3 The stack and stack entries

When generating the code, a stack is used to represent the state of the
system. When data is pushed on the stack, a Value describing how that
data was created is added; when data is popped, a Value describing the
popped data is removed.
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To manipulate the stack, use the push and pop methods to push or pop
values. Unlike the STL stack, pop returns the value being popped from
the stack, so you do not have to first get the top element and then pop it
afterwards, but you can still call the peek method if you just want to look
at the topmost element without removing it. Additionally, it has an empty
method to check if the stack is empty.

Some engines require you to look further down the stack than just the
topmost element. You can use the peekPos method to retrieve an element at
an arbitrary position in the stack. This method takes an integer containing
the number of stack entries to skip, i.e. passing the value 0 will give you the
topmost element, while passing the value 2 will give you the third value on
the stack.

Note: peekPos accesses the underlying STL container (std::deque) us-
ing the at function, which will throw an exception if the stack does not
contain enough elements.

When working with values, you should use the ValuePtr type. This
wraps the entry in a boost::intrusive_ptr to free the associated memory
when it is no longer referenced.

Some value types contain references to an arbitrary number of values.
This can be handled using an STL deque, typedef’ed as ValueList.

The following value types are predefined:

Integers (IntValue) Integers can use up to 32-bits, and be signed or
unsigned. When creating an integer, you must specify its value and whether
or not it is signed. This also contains additional methods to extract the
value and signedness of the value, which may be of use in some situations.

Addresses (AddressValue/RelAddressValue) Addresses are imple-
mented as a specialization of IntValue. When output to a string, hexadeci-
mal notation is used instead of decimal, and for relative addresses, the sign
is prefixed and the absolute offset value is used instead (i.e., -1 is shown as
-0x1 instead of 0xFFFFFFFF).

Absolute addresses cannot be retrieved using getSigned, while relative
addresses will return the offset with this method. To get the absolute address
associated with either of these values, call getUnsigned.

Variables (VarValue) Variables are stored as a simple string. Subclasses
of CodeGenerator must implement their own logic to determine a suitable
variable name when given a reference.

Binary operations (BinaryOpValue) Binary operations stores the two
stack entries used as operands, and a string containing the operator. Paren-
theses are added if the operator precedence requires it.
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Unary operations (UnaryOpValue) Just like binary operations, ex-
cept only a single operand is stored. The operator can be placed before
(prefix) or after (postfix) the operand.

Duplicated entries (DupValue) Stores an index to distinguish between
multiple duplicated entries. This index is automatically assigned and deter-
mined when calling the dup function to duplicate a stack entry.

Array entries (ArrayValue) Array entries are stored as a simple string
containing the name of the array, and an EntryList of stack entries used as
the indices, with the first element in the ValueList being output as the first
index.

Strings (StringValue) A string is stored as... well, a string. The default
implementation automatically surrounds the string with quotes.

Negated values (NegatedValue) NegatedValue represents an expres-
sion of the form !value, i.e. boolean negation. This type is used to ensure
that value->negate()->negate() does not actually perform double nega-
tion, but simply uses the original value.

Function calls (CallValue) Function calls have the same underlying
storage types as an array entry, but the output is formatted like a func-
tion call instead of an array access.

Each entry type knows how to output itself to an std::ostream sup-
plied as a parameter to the print function, and the common base class
StackEntry also overloads the « operator so any stack entry can be streamed
directly to an output stream using that function.

5.4 Outputting code

When processing certain kinds of instructions, you will probably want to
create a line of code as part of the output. To do that, call addOutputLine
with a string containing the code you wish to output as an argument. This
will then be associated with the group being processed.

If your line of code deals with specialized control flow, you will probably
want to do something about the indentation. You can supply two extra
boolean arguments to addOutputLine to state that the indentation should
be decreased before outputting this line, and/or that the indentation should
be increased for lines output after this line. If you leave out these arguments,
no extra indentation is added.

Note: By default, if, while and do-while statements detected in the con-
trol flow graph are automatically output after processing the conditional
jump. To fill in the condition, the topmost stack value is used.
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Note: This indent handling is currently considered a temporary solution
until there is time to implement something better. It may be replaced with
a different form of indentation handling at a later time.

You will usually need to output assignments at some point. For that,
you can use the writeAssignment method to generate an assignment state-
ment. writeAssignment takes two parameters, the first being the Value
representing the left-hand side of the assignment operator, and the second
being the Value representing the right-hand side of the operator.

5.5 Default instruction handling and instruction metadata

Default handling exists for a number of instruction types, described below.
See also Section 3.1 on page 7 which discusses instructions in more detail.

DupStackInstruction The topmost stack entry is popped, and two du-
plicated copies are pushed to the stack. If the entry being duplicated was
not already a duplicate, an assignment will be output to assign the original
stack entry to a special dup variable, to show that the original entry is not
being recalculated.

UnaryOpPrefixStackInstruction/UnaryOpPostfixStackInstruction
The topmost stack entry is popped, and a UnaryOpEntry is created and
pushed to the stack, using the codegen metadata as the operator, and the
previously popped entry as the operand. The exact type determines whether
the operator is pre- or postfixed to the operand.

BinaryOpStackInstruction The two topmost stack entries are popped,
and a BinaryOpEntry is created and pushed to the stack, using the codegen
metadata as the operator and the previously popped entries as the operands.
The order of the operands is determined by the value of the field _binOrder,
as described in Section 5.6 on the following page.

ReturnInstruction This simply adds a line return; to the output.
Note: The default handling does not currently allow specifying a return

value as part of the statement, as in return 0;. You will have to handle
that yourself using a subclass.

KernelCallStackInstruction The metadata is treated similar to param-
eter specifications in SimpleDisassembler (see Section 3.5 on page 11). If
the specification string starts with the character r, this signifies that the call
returns a value, and processing starts at the next character. For each char-
acter in the metadata string, processSpecialMetadata is called with the
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instruction being processed, and the current metadata character to be han-
dled. The default implementation only understands the character p, which
pops an argument from the stack and adds it to the argument list. Once
the metadata string has been processed fully, then an entry representing the
function call is pushed to the stack if the call returns a value. Otherwise,
the call is added to the output.

You can override the processSpecialMetadata method to add your
own specification characters, just like you would override readParameter in
SimpleDisassembler. Use the addArg method to add arguments.

Due to the conflict with the specification of a return value, it is recom-
mended that you do not adopt r as a metadata character unless you provide
your own processInst implementation for this purpose.

UncondJumpInstruction Nothing is output, as this should already be
handled by the generic code.

In addition, certain instruction types trigger additional generic behavior:

Conditional jumps After processing the conditional jump, an if, while or
do-while condition is output using the topmost stack entry as the condition.
The condition is automatically negated for if and while conditons, so you
only need to consider what the instruction itself does. If the jump is taken
when the checked condition is false (e.g. a jumpFalse instruction), you must
remember to negate the value representing the condition.

Unconditional jumps After processing the instruction, if the current
group has been detected as a break or a continue, a break or continue state-
ment is output. Otherwise, the jump is analyzed and output unless it is a
jump back to the condition of a while-loop that ends there, or it is deter-
mined that the jump is unnecessary due to an else block following immedi-
ately after. A default, empty implementation of processInst is provided
for this type.

Other types No default handling exists for types other than those men-
tioned above, so you must handle them yourself by creating new Instruction
subclasses.

Note that this also includes CallInstruction. Although many engines
might want to handle this in a manner similar to KernelCallInstruction
opcodes, this is left to the engine-specific code so they can fully make sense
of the metadata they choose to add to the function.

5.6 Order of arguments

The generic handling of binary operators (BinaryOpStackInstruction) and
kernel functions (KernelCallStackInstruction) can be configured to dis-
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play their arguments using FIFO or LIFO - respectively, the first and the
last entry to be pushed onto the stack is used as the first (leftmost) argu-
ment. This is set as part of the constructor for the CodeGenerator class,
using the enumeration values kFIFOArgOrder and kLIFOArgOrder.

To provide an example, consider the following sequence of instructions:
1 PUSH a
2 PUSH b
3 SUB

This can mean two different things, either a - b or b - a, depending
on the order in which the operands should be evaluated. For the former,
choose FIFO ordering, for the latter, choose LIFO.

For arguments to function calls, the same principle applies. You can use
the addArgmethod to add an argument to the call currently being processed,
using the chosen ordering.

In general, you might not know which ordering is more correct for func-
tion arguments; unless you have reason to believe otherwise, simply use the
same ordering as for binary operators.

6 Current restrictions
This section describes restrictions and limitations that are currently placed
on the individual engines that have been implemented.

6.1 SCUMMv6

roomObj scripts have a header specifying offsets for various verbs. This
is currently ignored, and the script is treated as a single piece of code; it
would be more appropriate to create functions from these and properly treat
stopObjectCodeA/B as returns.

6.2 KYRA2

The decompiler has only been tested with English scripts (.EMC files) from
the Kyra 2 demo. It is possible that some scripts from the full version
misbehave somehow; as I do not own the game, I cannot be sure of this.

The setRetAndJmp opcode is not currently handled since I don’t have
any examples of it.

Only "regular" scripts are supported; animation scripts are not sup-
ported. It looks like the file names of animation scripts all start with either
_Z or _IDL, but this is not necessarily an exhaustive list.
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7 To-do list
During the course of developing the decompiler, various ideas have been
considered for implementation in the decompiler, but not all of them could
be implemented within the given timeframe.

Following is a description of known issues and enhancements that would
be nice to see in the decompiler at some point in time.

Note that the order of the issues is not necessarily indicative of the
priority that should be given to each issue.

7.1 Allow conditional jumps to be used for break/continue

Currently, only unconditional jumps are allowed for break/continue. How-
ever, where the code is similar to if (...) break;, it is a simple and
obvious optimization to not output an unconditional jump and just make
the proper address the target of the conditional jump from the if.

Support for this should be added to the analysis. Should be doable
by also checking destinations of unmarked conditional jumps, since ifs are
marked after breaks and continues - so simply add that to the initial filter
and make sure we process the right (non-sequential) target vertex.

Classifying as an enhancement since it appears this optimization is not
used in SCUMMv6 (there is an if (...) break in tentacle/room-13-206, but
the break is a separate jump). Not sure if KYRA uses it - a cursory scan
of the KYRA2 demo suggests that it could use an optimization, as I found
only 1 occurence of a c1_ifNotJmp immediately followed by a c1_jump
(skull\skull.emc, 0x0578) - but it did not look like a loop. That, however,
does not prove that KYRA actually uses the optimization - it could simply
be that such a piece of code was never used.

As far as I have been able to tell, this optimization really is not used in
Kyra, so this will have to be deferred until we have an engine which needs
it.

7.2 Re-enable short-circuit detection

Currently the short-circuit detection is disabled because it requires some
extra handling in code generation which is not there yet (you have to analyze
each jump more closely).

7.3 Refactor CFG design

The CFG anaylsis, while certainly functional, is not entirely pretty right
now.

It would be a good idea to go over this and see if it can be made better
somehow, e.g. by incorporating more of the syntax as nodes in the graph.
This might also make it easier to get short-circuiting working correctly.
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7.4 Refactor disassemblers to accept a SeekableReadStream

It would be desirable if disassemblers accepted a Common::SeekableReadStream
instead of a Common::File, for easier integration with other tools and pos-
sibly ScummVM itself.

Unfortunately, streams do not currently exist in the tools repository. To
get around this, it should be enough to move over ReadStream, WriteStream,
and SeekableReadStream to begin with, and make Common::File subclass
from the required streams.

This is very much an *optional* task, and only to be done near the end,
if time permits - it is not really within the scope of the project, and it would
be fairly easy to make the switch after GSoC.

7.5 SCUMM: Rewrite jump 0 at end of script to infinite loop

Several SCUMM scripts end with a jump 0, making them infinite loops.
It would be nice if this could be expressed accordingly, but this does not
appear to be a trivial task; some jump 0s in a script could be expressed as
a continue, others cannot.

7.6 Proper getCondition method on Value

For now, it is assumed that conditional jumps leave their condition on the
stack, so this can be retrieved by the generic code generation code. For
non-stack-based engines, it would be a bit nicer if they could just give us a
condition to use in an if/while/do-while, instead of currently requiring that
the value is on the top of the stack.

A very simple way to do this would be to simply define a getCondition
on Value that takes the same parameters as processInst, with a default
implementation that just calls processInst and pops and returns the top
value from the stack - this means no changes would be required to exisiting
engines, and new engines can override this method as they see fit.
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